Structure Reports

Online
ISSN 1600-5368

Shi-Ying Wang, Jun Wan, Bo
 Yang, Xue-Mei Li and Shu-Sheng Zhang*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.097$
Data-to-parameter ratio $=9.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(2H-Benzotriazol-2-yl)-1-phenylethanone

The molecule of the title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$, is nonplanar, with a dihedral angle of $72.06(9)^{\circ}$ between the benzene and benzotriazole planes. Molecules are linked into two-dimensional layers via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

In recent years, benzotriazoles, especially, those substituted at the 2-position of the heterocycle, have attracted special attention (Voronkov et al., 2003). A variety of benzotriazoles exhibit growth-inhibiting activities against some microorganisms and other derivatives are endowed with anti-inflammatory properties (Zelnik \& Strehlau, 1971). We report here the structure of a 2 -substituted benzotriazole compound, (I).

(I)

The bond lengths and angles are within normal ranges (Allen et al., 1987), and the bonds in the benzotriazole group show a characteristic intermediate length between single and double bonds because of the conjugated π system (Table 1). The C9-C14 benzene and triazole rings are essentially coplanar, with a dihedral angle of $0.7(1)^{\circ}$ between these two rings, while the benzotriazole plane and the phenyl ring twist $72.06(9)^{\circ}$ from each other. In the crystal structure, molecules are linked into two-dimensional layers via $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2 and Fig. 2).

Experimental

To a solution of 2-(2H-bromine-2-yl)-1-phenylethanone $(20 \mathrm{~g}$, 0.1 mol) in acetone (80 ml) was added 1,2,3-benzotriazole (11.9 g , 0.1 mol). The mixture was heated under reflux for 1 h , yielding a copious precipitate. Colorless single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate and petroleum ether $(1: 1 \mathrm{v} / \mathrm{v})$ solution over a period of one week.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} \\
& M_{r}=237.26 \\
& \text { Tetragonal, } P 4_{3} 2_{1} 2 \\
& a=8.1925(3) \AA \\
& c=35.46(3) \AA \\
& V=2380.1(2) \AA \AA^{3} \\
& Z=8 \\
& D_{x}=1.324 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Received 25 October 2005
Accepted 2 November 2005
Online 10 November 2005

Figure 1
The structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme.

Data collection

Siemens SMART 1000 CCD areadetector diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.970, T_{\text {max }}=0.993$
14062 measured reflections

1477 independent reflections
1277 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-10 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-43 \rightarrow 30$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.098$
$S=1.20$
1477 reflections
163 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0436 P)^{2}\right. \\
\quad+0.1331 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.14 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.12 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{O} 1-\mathrm{C} 7$	$1.196(3)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.323(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.319(2)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.449(3)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.348(3)$	$\mathrm{N} 3-\mathrm{C} 14$	$1.347(3)$

Table 2
Hydrogen-bond geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~N}^{\mathrm{i}}$	0.97	2.54	$3.471(3)$	160
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.52	$3.439(3)$	170
Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2},-z+\frac{1}{4}$; (ii) $x+\frac{1}{2},-y+\frac{3}{2},-z+\frac{1}{4}$				

All H atoms were located in a difference Fourier map and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The Friedel pairs were merged before

Figure 2
A packing view down the c axis. Hydrogen bonds are indicated by dashed lines.
the final refinement because of the absence of significant anomalous scattering effects.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Program for New Century Excellent Talents in Universities (No. NCET-040649) and the Project of Educational Administration of Shandong Province (No. J04B12).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Voronkov, M. G., Trofimova, O. M., Bolgova, Yu. I., Larina, L. I., Albanov, A. I., Pestunovich, V. A., Chernov, N. F. \& Petrushenko, K. B. (2003). Chem. Heterocycl. Comp. 39, 1639-1644.
Zelnik, R. \& Strehlau, F. (1971). Ann. Acad. Bras. Cienc. 43, 385-388.

