organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Shi-Ying Wang, Jun Wan, Bo Yang, Xue-Mei Li and Shu-Sheng Zhang*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.004 Å R factor = 0.042 wR factor = 0.097 Data-to-parameter ratio = 9.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(2H-Benzotriazol-2-yl)-1-phenylethanone

The molecule of the title compound, C14H11N3O, is nonplanar, with a dihedral angle of $72.06 (9)^{\circ}$ between the benzene and benzotriazole planes. Molecules are linked into two-dimensional layers via weak C-H···N and C-H···O interactions.

Comment

In recent years, benzotriazoles, especially, those substituted at the 2-position of the heterocycle, have attracted special attention (Voronkov et al., 2003). A variety of benzotriazoles exhibit growth-inhibiting activities against some microorganisms and other derivatives are endowed with anti-inflammatory properties (Zelnik & Strehlau, 1971). We report here the structure of a 2-substituted benzotriazole compound, (I).

The bond lengths and angles are within normal ranges (Allen et al., 1987), and the bonds in the benzotriazole group show a characteristic intermediate length between single and double bonds because of the conjugated π system (Table 1). The C9-C14 benzene and triazole rings are essentially coplanar, with a dihedral angle of $0.7 (1)^{\circ}$ between these two rings, while the benzotriazole plane and the phenyl ring twist $72.06 (9)^{\circ}$ from each other. In the crystal structure, molecules are linked into two-dimensional layers via C-H···N and C- $H \cdots O$ interactions (Table 2 and Fig. 2).

Experimental

To a solution of 2-(2H-bromine-2-yl)-1-phenylethanone (20 g, 0.1 mol) in acetone (80 ml) was added 1,2,3-benzotriazole (11.9 g, 0.1 mol). The mixture was heated under reflux for 1 h, yielding a copious precipitate. Colorless single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate and petroleum ether (1:1 v/v) solution over a period of one week.

Crystal data	
$C_{14}H_{11}N_{3}O$	Mo $K\alpha$ radiation
$M_r = 237.26$	Cell parameters from 2708
Tetragonal, P4 ₃ 2 ₁ 2	reflections
a = 8.1925 (3) Å	$\theta = 2.5 - 20.7^{\circ}$
c = 35.462 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
V = 2380.1 (2) Å ³	T = 293 (2) K
Z = 8	Block, colorless
$D_x = 1.324 \text{ Mg m}^{-3}$	$0.35 \times 0.11 \times 0.08 \text{ mm}$

© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Received 25 October 2005

Accepted 2 November 2005

Online 10 November 2005

Figure 1

The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Data collection

Siemens SMART 1000 CCD area-	1477 independent reflections
detector diffractometer	1277 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.039$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 9$
$T_{\min} = 0.970, \ T_{\max} = 0.993$	$k = -10 \rightarrow 10$
14062 measured reflections	$l = -43 \rightarrow 30$

 $w = 1/[\sigma^2(F_0^2) + (0.0436P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.1331P]

 $\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.14 \text{ e } \text{\AA}^{-3}$

Refinement

Refinement on F^2	
$R[F^2 > 2\sigma(F^2)] = 0.042$	
$wR(F^2) = 0.098$	
S = 1.20	
1477 reflections	
163 parameters	
H-atom parameters constrained	

Table 1

Selected bond lengths (Å).

O1-C7	1.196 (3)	N2-N3	1.323 (2)
N1-N2	1.319 (2)	N2-C8	1.449 (3)
N1-C9	1.348 (3)	N3-C14	1.347 (3)

Table 2

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8A\cdots N3^{i}$	0.97	2.54	3.471 (3)	160
$C11-H11A\cdots O1^{ii}$	0.93	2.52	3.439 (3)	170

All H atoms were located in a difference Fourier map and constrained to ride on their parent atoms, with C-H = 0.93 or 0.97 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$. The Friedel pairs were merged before

Figure 2

A packing view down the c axis. Hydrogen bonds are indicated by dashed lines.

the final refinement because of the absence of significant anomalous scattering effects.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

This project was supported by the Program for New Century Excellent Talents in Universities (No. NCET-04-0649) and the Project of Educational Administration of Shandong Province (No. J04B12).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Voronkov, M. G., Trofimova, O. M., Bolgova, Yu. I., Larina, L. I., Albanov, A. I., Pestunovich, V. A., Chernov, N. F. & Petrushenko, K. B. (2003). *Chem. Heterocycl. Comp.* **39**, 1639–1644.

Zelnik, R. & Strehlau, F. (1971). Ann. Acad. Bras. Cienc. 43, 385-388.